skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Porter, Ryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Workbench-size particle accelerators, enabled by Nb3Sn-based superconducting radio-frequency (SRF) cavities, hold the potential of driving scientific discovery by offering a widely accessible and affordable source of high-energy electrons and x-rays. Thin-film Nb3Sn RF superconductors with high quality factors, high operation temperatures, and high-field potentials are critical for these devices. However, surface roughness, non-stoichiometry, and impurities in Nb3Sn deposited by conventional Sn-vapor diffusion prevent them from reaching their theoretical capabilities. Here we demonstrate a seed-free electrochemical synthesis that pushes the limit of chemical and physical properties in Nb3Sn. Utilization of electrochemical Sn pre-deposits reduces the roughness of converted Nb3Sn by five times compared to typical vapor-diffused Nb3Sn. Quantitative mappings using chemical and atomic probes confirm improved stoichiometry and minimized impurity concentrations in electrochemically synthesized Nb3Sn. We have successfully applied this Nb3Sn to the large-scale 1.3 GHz SRF cavity and demonstrated ultra-low BCS surface resistances at multiple operation temperatures, notably lower than vapor-diffused cavities. Our smooth, homogeneous, high-purity Nb3Sn provides the route toward high efficiency and high fields for SRF applications under helium-free cryogenic operations. 
    more » « less
  2. Abstract The thermal regime of continental lithosphere plays a fundamental role in controlling the behavior of tectonic plates. In this work, we assess the thermal state of the North American upper mantle by combining shear‐wave velocity models, calculated using data from the EarthScope facility, with empirically derived anelasticity models and basalt thermobarometry. We estimate the depth of the thermal lithosphere‐asthenosphere boundary (LAB), defined as the intersection of a geotherm with the 1300°C adiabat. Results show lithospheric thicknesses across the contiguous US vary between ∼40 km and >200 km. The thinnest thermal lithosphere is observed in the tectonically active western US and the thickest lithosphere in the midcontinent. By combining geotherm estimates with solidus curves for peridotite, we show that a pervasive partial melt zone is common within the western US upper mantle and that partial melt is absent in the eastern and central US without significant metasomatism. 
    more » « less
  3. null (Ed.)
  4. Abstract Low‐angle subduction has been shown to have a profound impact on subduction processes. However, the mechanisms that initiate, drive, and sustain flat‐slab subduction are debated. Within all subduction zone systems, metamorphic dehydration reactions within the down‐going slab have been hypothesized to produce seismicity, and to produce water that fluxes melting of the asthenospheric wedge leading to arc magmatism. In this work, we examine the role hydration plays in influencing slab buoyancy and the geometry of the downgoing oceanic plate. When water is introduced to the oceanic lithosphere, it is incorporated into hydrous phases, which results in lowered rock densities. The net effect of this process is an increase in the buoyancy of the downgoing oceanic lithosphere. To better understand the role of water in low‐angle subduction settings, we model flat‐slab subduction in Alaska, where the thickened oceanic lithosphere of the Yakutat oceanic plateau is subducting beneath the continental lithosphere. In this work, we calculate the thermal conditions and stable mineral assemblages in the slab crust and mantle in order to assess the role that water plays in altering the density of the subducting slab. Our slab density results show that a moderate amount of hydration (1–1.5 wt% H2O) in the subducting crust and upper lithospheric mantle reduces slab density by 0.5%–0.8% relative to an anhydrous slab, and is sufficient to maintain slab buoyancy to 300–400 km from the trench. These models show that water is a viable factor in influencing the subduction geometry in Alaska, and is likely important globally. 
    more » « less